SYNTHETIC STUDY ON GLYCOPHOSPHATIDYL INOSITOL (GPI) ANCHOR OF TRYPANOSOMA BRUCEI: GLYCOHEPTAOSYL CORE¹)

Chikara Murakata and Tomoya Ogawa* RIKEN (The Institute of Physical and Chemical Research), Wako-shi, Saitama, 351-01 Japan

Abstract: A stereocontrolled approach to the synthesis of glycoheptaosyl core of glycophosphatidyl inositol (GPI) anchor of *Trypanosoma brucei* is described for the first time.

In 1988, chemical structures of the major species of glycophosphatidyl inositol (GPI) anchor present on a variant surface glycoprotein (VSG) of the parasitic protozoan *Trypanosoma brucei* were determined². A typical structure may be depicted as 1. Subsequently, was reported³ the structure for GPI anchor of rat brain Thy-1 glycoprotein which has a common backbone structure with the anchor of VSG but shows significant differences in the branching pattern of the glycans. Involvement of these GPI molecules not only in the anchoring of proteins to membranes but also in transmembrane signaling function of insulin was recently reported⁴. We discuss here a stereocontrolled synthesis of glycoheptaosyl core 2 of the GPI anchor 1. It is to be noted that in close connection with our approach an elegant synthesis of a glycopentaosyl part of 2 was recently described by Fraser-Reid and co-workers⁵.

Scheme 1 (MBn = 4-MeO-Bn)

Our synthetic strategy for the target molecule 2 is mainly based on the proper choice of the protective groups that should be in harmony with an overall strategy aiming at the total

synthesis of 1. Therefore the hydroxyl groups of the immediate precursor 29 of 2 were protected so that site-selective phosphorylation at $O-1^{1}$ and $O-6^{5}$ should be possible in priniciple. Structure of the key glycotriosyl acceptor 6 was designed in order to elongate three different chains at $O-1^{1}$, $O-3^{3}$, and $O-6^{3}$. Addition of the mannobiosyl chain at $O-3^{6}$ of 6, may be achieved by use of two mannosyl donors 3 and 4, while chain elongation at $O-3^{3}$ may be examined by use of a galactobiosyl donor 5.

Scheme 2 (CAM = (1S)-(-)-camphanoyi)

The key intermediate 6 was prepared in a following way. Treatment of myo-inositol derivative 7⁶ with Bu₂SnO and CsF-MeOBnCl-KI⁷ afforded an 81% yield of a mixture of 8⁷ and 9⁸ in a ratio of 3:1. A major product 8 was converted via 10⁸, in 5 steps into a mixture of 11 and the diastereoisomer, from which 11⁸ was isolated by chromatography ($l CH_2=CHCH_2Br$, NaH, in DMF, 2 0.1M HCl in MeOH, 3 BnBr, NaH in DMF, 4 KO^tBu in DMSO, then 0.1M HCl in aq. Me₂CO⁹, 5 (1S)-(-)-camphanic acid chloride¹⁰, Et₃N, DMAP in (ClCH₂)₂, then SiO₂ in Et₂O-CH₂Cl₂, 32% overall). Conversion of 11 into a glycosyl acceptor 13⁸ was achieved via 12⁸ in 5 steps (l CAN in 4:1 CH₃CN-H₂O¹¹, 2 CH₂=CHOEt, TsOH-H₂O in CH₂Cl₂, 3 NaOH in MeOH-THF, 4 MeOBnCl¹², NaH in DMF, 5 AcOH-MeOH, 83% overall). Absolute configuration of 13 was confirmed by conversion into the known 2,3,4,5,6-penta-O-benzyl-1D-myo-inositol^{10,13} in 2 steps {l BnBr, NaH in DMF, 2 CAN in 10:1 CH₃CN-H₂O, 84% overall, [α]_D +10.6° (c 0.7, CHCl₃)}.

A glycobiosyl fluoride 19 was prepared from two monosaccharide derivatives 14^{14} and 16^{15} . Conversion of 14 into a glycosyl acceptor 15^{14} was achieved in 3 steps (*I* PhCH(OMe)₂, TsOH-H₂O in CH₃CN, 2 BnBr, NaH in DMF, 3 BH₃NMe₃, AlCl₃, powdered molecular sieves 4A (MS4A) in THF¹⁶, 61% overall). Copper(II) bromide-Bu₄NBr-AgOTf promoted glycosylation¹⁷ of 15 with 17^8 , readily obtainable in 86% from 16^{15} by treatment with Bu₃SnSMe¹⁸ and SnCl₄ in (ClCH₂)₂, gave 86% of 18 which was converted into 19 in 2 steps (*I* Bu₄NF in AcOH-THF¹⁹, 2 DAST in (ClCH₂)_{2²⁰}, 96% overall). Crucial coupling of 19 with 13 in the presence of Cp₂ZrCl₂-AgClO4²¹ in Et₂O gave 20⁸ and the β-epimer in 73 and 20%, respectively. Conversion of 20 into a key intermediate 6^8 was performed in 2 steps (*I* NaOMe in THF-MeOH, 2 AcCl in Py, 95% overall).

Copper(II) bromide-Bu4NBr promoted glycosylation of a primary alcohol 22⁸ obtainable from 21 in 5 steps (1 4-MeOPhOH, TMSOTf in CH₂Cl₂, 2 NaOMe in MeOH, 3 4,4'-(MeO)₂TrCl in Py, 4 BnBr, NaH in DMF, 5 TsOH-H₂O in MeOH, 51% overall) with 23²² afforded 24⁸ and the β -(1 \rightarrow 6) isomer in 68 and 10% yield, respectively. Conversion of 24 into fluoride 5 (α : β =2:3) was performed in 2 steps (1 CAN in 5:6:3 toluene-CH₃CN-H₂O, 2 DAST in (ClCH₂)₂, 64% overall).

Crucial α -stereoselective glycosylation at O-3³ of 6 with 5 was achieved in the presence of Cp₂ZrCl₂-AgClO₄ in Et₂O to give 69% of 25 along with 7% of the β -epimer at C-1⁶. Glycopentaoside 25 was converted in a well established manner into 28 via 26 in 3 steps (1 NaOMe in THF-MeOH, 2 HgBr₂-Hg(CN)₂-MS4A, 4²³ in CH₂Cl₂, 3 NaOMe in THF-MeOH, 75% overall).

Finally, Cp2ZrCl₂ promoted glycosylation of 28 in Et₂O with 3⁸ readily obtainable from corresponding anomeric acetate²⁴ in 2 steps (*l* NH₂NH₂•AcOH in DMF²⁵, 2 DAST in (ClCH₂)₂, 69% overall) did afford 29⁸ and the β -epimer (98%, α : β =15:1). Deprotection of 29 into 2⁸ was achieved in a conventional way (*l* Pd-C, H₂ in THF-MeOH, 2 NaOMe-MeOH, then Sephadex G25 in H₂O, 94% overall).

In summary, a stereocontrolled approach to the synthesis of core glycoheptaoside 2 of GPI anchor 1 was developed by use of three glycosyl donors 3, 4, 5 and a key glycosyl acceptor 6. Properly protected glycoheptaoside 29 should be regarded as a key intermediate to achieve a total synthesis of 1.

Acknowledgment. We thank Dr. J. Uzawa and Mrs. T. Chijimatsu for recording and measuring the n.m.r. spectra and Mrs. M. Yoshida and her staff for the elemental analyses. We also thank Ms. A. Takahashi and Ms. K. Moriwaki for their technical assistance.

Reference and Notes

- 1 Part 75 in the series "Synthetic Studies on Cell-Surface Glycans". For part 74, see T. Nakano, Y. Ito and T. Ogawa, *Tetrahedron Lett.*, in press.
- 2 M. A. J. Ferguson, S. W. Homans, R. A. Dwek, and T. W. Rademacher, Science, 239, 753 (1988); B. Schmitz, R. A. Klein, I A. Duncan, H. Egge, J. Gunawan, and J. Peter-Katalinic, Biochem. Biophys. Res. Commun., 146, 1055 (1987).
- 3 S. W. Homans, M. A. J. Ferguson, R. A Dwek, T. W. Rademacher, R. Anand, and A. F. Williams,

Nature, 337, 269 (1988).

- 4 M. G. Low and A. R. Saltiel, Science, 239, 268 (1988); M. A. J. Ferguson and A. F. Williams, Ann. Rev. Biochem., 57, 285 (1988).
- 5 D. R. Mootoo, P. Konradsson, and B. Fraser-Reid, J. Am. Chem. Soc., 111, 8540 (1989).
- P. J. Garegg, T. Iversen, R. Johansson, and B. Lindberg, Carbohydr. Res., 130, 322 (1984).
- 7 N. Nagashima and M. Ohno, Chem. Lett., 141 (1987); K.-L. Yu and B. Fraser-Reid. Tetrahedron Lett., 29, 979 (1988).
- Physical data for key compounds are given below. Values of $[\alpha]_D$ and $\delta_{H,C}$ were recorded for 8 solutions in CHCl3 and CDCl3, respectively, at 23°±3°, unless noted otherwise. 2: $[\alpha]_D$ +2.9° (c 0.07. HOO): SH (DOO, 60°) 4.97 (d. 3.7 Hz, 17), 5.03 (d, 1.4 Hz, 15), 5.11 (d, 1.4 Hz, 14), 5.19 (d, 4.1 Hz, 1^{6}), 5.22 (d, 1.6 Hz, 1^{3}), 5.32 (d, 3.7 Hz, 1^{2}). 3; $\lceil \alpha \rceil \neg \rceil + 29.2^{\circ}$ (c 1.4); $\delta H 2.05$ (s, Ac), 5.55 (dd, 1.8 and 50.6 Hz, 1); δ_C 106.3 (223 and 182 Hz, 1). 5 (α:β=2:3): δ_H 5.10 (dd, 7.0 and 53.1 Hz, 1⁶β), 5.55 (dd, 2.6 and 54.2 Hz, $1^{6}\alpha$). 6: $[\alpha]_{D}$ +69.3° (c 0.6); δ_{H} 1.92 (s, Ac), 3.66 (s, OMe), 5.27 (d, 1.2 Hz, 1^{3}), 5.64 (d, 3.7 Hz, 1²). 8: 8H 2.58 (d, 1.2 Hz, OH), 3.81 (s, OMe), 4.01 (dt, 3.7 and 1.8 Hz, 1), 9: 8H 2.60 (d, 2.1 Hz, OH), 3.81 (s, OMe), 4.06 (ddd, 2.1, 7.2, and 9.3 Hz, 6), 10: SH 2.16 (d, 6.4 Hz, OH), 3.79 (s, OMe). 11: [a]D +9.5° (c 0.6); $\delta_{\rm H}$ 0.91, 1.02 and 1.09 (3s, 3Me), 3.78 (s, OMe), 4.94 (dd, 2.4 and 10.3 Hz, 1). 12: $[\alpha]_D + 1.5^\circ$ (c 0.3); $\delta_H 0.95$, 1.01 and 1.10 (3s, 3Me), 4.91 (dd, 2.6 and 10.2 Hz, 1). 13: [α]D +8.8° (c 2.6); δH 2.47 (s, OH), 3.81 (s, OMe), 4.02 (t, 2.3 Hz, 2), 15; [α]D -31.7° (c 0.4); δH 0.16 (s, SiMe2), 0.94 (s, tBu), 3.64 (dt, 2.2 and 9.5 Hz, 4), 4.53 (d, 7.6 Hz, 1), 17: [a]p +53.1° (c 0.4); SH 1.97. 2.06. 2.12 (3s. 3Me), 5.18 (dd. 3.4 and 9.5 Hz, 3), 5.24 (d, 1.5 Hz, 1); SC 83.0 (167 Hz, 1). 18: [α]D +5.4° (c 0.4); δH 0.17 and 0.18 (2s, SiMe2), 0.94 (s, tBu), 1.96 and 1.98 (2s, 2Ac), 4.55 (d, 6.1 Hz, 1²), 5.21 (dd, 2.9 and 8.1 Hz, 3³), 5.24 (d, 2.4 Hz, 1³); 8C 97.2 (162 Hz, 1²), 99.8 (167 Hz, 1³), 19 $(\alpha:\beta=1:2): \delta_{H} 5.11 (dd, 7.0 and 52.4 Hz, 1^{2}\beta), 5.68 (dd, 2.2 and 52.8 Hz, 1^{2}\alpha), 20: [\alpha]_{D} +49.2^{\circ} (c, 0.6);$ $\delta_{\rm H}$ 1.92 and 1.96 (2s, 2Ac), 3.62 (s, OMe), 5.19 (d, 2.1 Hz, 1³), 5.29 (dd, 3.1 and 9.5 Hz, 3³), 5.60 (d, 3.7 Hz. 1²); δ_C 97.6 (177 Hz, 1²), 100.3 (172 Hz, 1³). 22: [α]_D -24.8° (c 0.2); δ_H 3.76 (s, OMe), 4.88 (d, 8.1 Hz, 1). 24: $[\alpha]_D$ +17.7° (c 0.4); m.p. 126-127° (iPr₂O); δ_H 3.67 (s, OMc), 4.73 (d, 3.3 Hz, 1⁷), 4.82 (d, 7.7 Hz, 1⁶); δ_{C} 98.2 (170 Hz, 1⁷), 103.1 (161 Hz, 1⁶). 25: [α]_D +72.2° (c 0.5); δ_{H} 1.82 (s, Ac), 3.18 (dd, 3.7 and 10.1 Hz, 2^2), 3.48 (s, OMe), 5.24 (s, 1^3), 5.63 (d, 3.7 Hz, 1^2); δ_{C} 97.6 (176 Hz, 1^2). 98.9 (170 Hz. 1⁷), 99.4 (170 Hz. 1⁶), 99.9 (166 Hz, 1³), 26: [α]D +63.0° (c 0.4); δ H 3.47 (s, OMe), 5.28 (bs. 1³). 5.58 (d. 3.7 Hz. 1²). 27: [α]D +73.2° (c 0.6); δH 2.05 (s, Ac), 3.45 (s, OMe), 5.24 (1.1 Hz, 13), 5.32 (d, 1.5 Hz, 14), 5.38 (d, 1.8 Hz, 16), 5.39 (dd, 1.8 and 3.3 Hz, 24), 5.61 (d, 3.7 Hz, 12); 80 97.7 (176 Hz, 1²), 98.2 (171 Hz, 1⁷), 98.5 (172 Hz, 1⁴), 99.4 (169 Hz, 1⁶), 100.2 (1³). 28: [a]D +72.9° (c 0.6); $\delta_{\rm H}$ 3.45 (s, OMe), 5.31 (d, 1.8 Hz, 1⁴), 5.63 (d, 3.7 Hz, 1²); $\delta_{\rm C}$ 97.7 (177 Hz, 1²), 98.5, 99.3 and 99.8 (~169 Hz, 1⁴,6,7), 100.1 (163 Hz, 1³). 29: [a]D +51.0° (c 0.3); 5H (C6D6, 60°) 1.76 (s, Ac), 3.40 (s, OMe), 5.03, and 5.38 (2d, 3.7 Hz, 1^{6,7}), 5.19, 5.23 and 5.78 (3d, 1.8 Hz, 1^{3,4,6}), 5.87 (d, 3.7 Hz, 1²); $\delta_{\rm C}$ 97.6 (175 Hz, 1²), 98.5, 99.2, 99.4 and 99.5 (~170 Hz, 1⁴, 5, 6, 7), 100.1 (1³).
- J. Gigg and R. Gigg, J. Chem. Soc, (C), 82 (1966).
- 10 D. C. Billington, R. Baker, J. J. Kulagowski, and I. M. Mawer, J. Chem. Soc., Chem. Commun., 314 (1987).
- 11 R. Johansson and B. Samuelsson, J. Chem. Soc., Chem. Commun., 201 (1984); T. Fukuyama, A. A. Laird, and L. M. Hotchkiss, Tetrahedron Lett., 26, 6291 (1985).
- 12 Y. Oikawa, T. Yoshika, and O. Yonemitsu, Tetrahedron Lett., 23, 885 (1982).
- 13 As for numbering of carbon atoms in myo-inositol, see Biochem. J., 258, 1 (1989).
- W. Kinzy, Dissertation (University of Konstanz) 25 (1986) see also ref. 19. 14
- 15 T. Ogawa and K. Sasajima, Tetrahedron, 37, 2789 (1981).
- M. Ek, P. J. Garegg, H. Hultberg, and S. Oscarson, J. Carbohydr. Chem., 2, 305 (1983).
 S. Sato, M. Mori, Y. Ito, and T. Ogawa, Carbohydr. Res., 155, C6 (1986).
- 18 T. Ogawa and M. Matsui, Carbohydr. Res., 54, C17 (1977).
- 19 W. Kinzy and R. R. Schmidt, Justus Liebigs Ann. Chem., 1537 (1985). 20 Wm. Rosenbrook, Jr., D. A. Riley, and P. A. Lartey, Tetrahedron Lett., 26, 3 (1985); G. H. Posner and S. R. Haines, ibid., 26, 5 (1985).
- 21 T. Matsumoto, H. Maeta, K. Suzuki, and G. Tsuchihashi, Tetrahedron Lett., 29, 3567 (1988).
- 22 K. Koike, M. Sugimoto, S. Sato, Y. Ito, Y. Nakahara, and T. Ogawa, Carbohydr. Res., 163, 189 (1987).
- 23 T. Ogawa, K. Katano and M. Matsui, Carbohydr. Res., 64, C3 (1978); P. J. Garegg and L. Maron, Acta. Chem. Scand. B, 33, 39 (1979).
- 24 T. Ogawa and K. Sasajima, Carbohydr. Res., 93, 67 (1981).
- 25 G. Excoffier, D. Gagnaire, and J.-P. Utille, Carbohydr. Res., 39, 368 (1975).

(Received in Japan 5 February 1990)